Oligodendrocyte progenitor cell proliferation and lineage progression are regulated by glutamate receptor-mediated K+ channel block.

نویسندگان

  • V Gallo
  • J M Zhou
  • C J McBain
  • P Wright
  • P L Knutson
  • R C Armstrong
چکیده

We have analyzed the role of glutamate and its receptors (GluRs) in regulating the development of oligodendrocytes. Activation of AMPA-preferring GluRs with selective agonists inhibited proliferation of purified cortical oligodendrocyte progenitor (O-2A) cells cultured with different mitogens, as measured by [3H]thymidine incorporation or bromodeoxyuridine staining. In contrast, activation of GABA or muscarinic receptors did not affect O-2A proliferation. Cell viability and apoptosis assays demonstrated that the inhibition of O-2A proliferation was not attributable to a cytotoxic action of GluR agonists, and was reversible. Activation of GluRs prevented lineage progression from the O-2A (GD3+/nestin+) stage to the prooligodendroblast (O4+) stage, but did not affect O-2A migration. Additional experiments examined the membrane ionic channels mediating these GluR activation effects. We found that proliferating O-2A cells expressed functional delayed rectifier K+ channels, which were absent in pro-oligodendroblasts. GluR agonists and the K+ channel blocker tetraethylammonium (TEA) strongly inhibited delayed rectifier K+ currents in O-2A cells. TEA reproduced the effects of GluR activation on O-2A proliferation and lineage progression in the same concentration range that blocked delayed rectifier K+ currents. These results indicate that glutamate regulates oligodendrogenesis specifically at the O-2A stage by modulating K+ channel activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neurotransmitter receptor activation triggers p27(Kip1 )and p21(CIP1) accumulation and G1 cell cycle arrest in oligodendrocyte progenitors.

We examined the pathways that link neurotransmitter receptor activation and cell cycle arrest in oligodendrocyte progenitors. We had previously demonstrated that glutamate receptor activation inhibits oligodendrocyte progenitor proliferation and lineage progression. Here, using purified oligodendrocyte progenitors and cerebellar slice cultures, we show that norepinephrine and the beta-adrenergi...

متن کامل

K+ channel expression and cell proliferation are regulated by intracellular sodium and membrane depolarization in oligodendrocyte progenitor cells.

The effects of a variety of antiproliferative agents on voltage-dependent K+ channel function in cortical oligodendrocyte progenitor (O-2A) cells were studied. Previously, we had shown that glutamate receptor activation reversibly inhibited O-2A cell proliferation stimulated by mitogenic factors and prevented lineage progression by attenuating outward K+ currents in O-2A cells. We now show that...

متن کامل

A role for glutamate and its receptors in the regulation of oligodendrocyte development in cerebellar tissue slices.

We tested the hypothesis that the neurotransmitter glutamate would influence glial proliferation and differentiation in a cytoarchitecturally intact system. Postnatal day 6 cerebellar slices were maintained in organotypic culture and treated with glutamate receptor agonists or antagonists. After dissociation, cells were stained with antibodies for different oligodendrocyte developmentally regul...

متن کامل

P50: Selective HCRTR2 Antagonism Increases Embryonic Mouse Cortex Neural Stem Progenitor Cells Proliferation

In multiple sclerosis Oligodendrocytes are obliterated by the immune system. neural stem/ progenitor cells (NS/P Cs) have the capacity to differentiate into mature myelinating oligodendrocytes. In embryonic mouse cortex oligodendrocyte progenitor cells (OPCs) are more abundant than the ganglionic eminence. Doing gene set enrichment analysis using DAVID and Panther websites it was shown that Gpr...

متن کامل

K+ channel KV3.1 associates with OSP/claudin-11 and regulates oligodendrocyte development.

K(+) channels are differentially expressed throughout oligodendrocyte (Olg) development. K(V)1 family voltage-sensitive K(+) channels have been implicated in proliferation and migration of Olg progenitor cell (OPC) stage, and inward rectifier K+ channels (K(IR))4.1 are required for OPC differentiation to myelin-forming Olg. In this report we have identified a Shaw family K(+) channel, K(V)3.1, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 16 8  شماره 

صفحات  -

تاریخ انتشار 1996